

Qui admettre en réanimation en 2022 Le patient atteint de leucémie aiguë

Dr Etienne Lengliné, MD Hématologie Adulte

Hôpital Saint-Louis, Paris, France

21^{ème} Rencontre sur Urgences et Complications Sévères chez le Patient Cancéreux

26/11/2022 Bruxelles

• Faut il admettre tous les patients ?

- 1. Quels qu'ils soient
- 2. Quelle que soit la maladie
- 3. Quel que soit le stade de traitement
- 4. Quelle que soit la complication aiguë

Hémopathies en réanimation

		30%	30%	15%			
		Leucémies aigues (M)	Lymphomes agressifs	Myélome			
50%		Leucostase	Syndrome d'activation macrophagique (SAM)	Sepsis			
	Respiratoire	Infiltration pulmonaire OAP	Sepsis OAP	OAP			
		Sepsis	infiltration pleuro-pulmonaire				
		Hémorragie	Médiasatin compressif				
30%	Choc	Sepsis Hemorragie	Sepsis SAM	Sepsis amylose cardiaque			
	Choc	anthracyclines					
-							
30%	Métabolique	Syndrome de lyse tumorale	Syndrome de lyse tumorale	Tubulopathie des chaines legeres			
	Rénal	Toxicité médicamenteuse	Toxicité médicamenteuse	Toxicité médicamenteuses			
				hyperviscosité			
20%		leucostase	Toxicité médicamenteuse	Toxicité médicamenteuses			
	Neurologique	Hémorragie	Localisation spécifique	Sepsis			
		Toxicité médicamenteuses	Sepsis	Hyperviscosité			

Spécificité de la réanimation hématologique

1 patient sur 4 admis en réanimation (1^{ere} année)

Ferreyro et al. ICM 2021

Quelle sélection en pratique ?

80-89 >90

0.765 (0.665, 0.880) 0.477 (0.384, 0.592)

Les LAM sont des pathologies du sujet âgé

*Data from the Swedish Acute Leukemia Registry. M, male; F, female Juliusson G *et al. Blood* 2009;113:4179–4187

Median age at diagnosis: 69 years

La guérison : pas pour tous

Registre Suédois

Registre SEER

Cancer sites include invasive cases only unless otherwise noted. The annual survival estimates are calculated using monthly intervals. Source: http://seer.cancer.gov/faststats/selections.php?series=age

Maladies hétérogènes

Maladies hétérogènes

Reference	Number of patients	Age (median, range)	MK frequency (%)	CR rate	OS	Comments
Breems et al ¹	1,975	NR, 15–60	9	48%	4% at 4 years	
Medeiros et al ⁹	1,344	NR, 16–88	13	18%	3% at 4 years	Monosomies of 5 and 7 were the most common
Grimwade et al ⁷	1,612	44, 16–59	6	NR	5% at 10 years	
Löwenberg et al ¹¹	813	67, 60–83	13	34%	4% at 2 years	
Lowenberg et al ¹⁰	860	49, 18–60	10	52%	7% at 5 years	
Perrot et al ¹⁷	186	68, 60–79	59	37%	7% at 2 years	
Haferlach et al ¹⁸	824*	NR, 15–60	19	NR	Median 5.7 months	All cases were analyzed by multicolor FISH
Voutiadou et al ¹³	549	53, 6–88	11.3	27%	8% at 3 years	Predominant monosomies were -5 and -7
Kayser et al ¹²	I,058*	57, 17–84	30	32.5%	9% at 4 years	NPM1, FLT3-ITD, FLT3-D835 less frequent in MK+ group
Yang et al ¹⁹	I,I 47 *	NR, 15–88	18.5	25%	Median 5 months	Monosomies of 5 and 7 were the most frequent
Ahn et al ²⁰	369	47 (18–85)	6.2	34.8%	8.7% at 3 years	
Weinberg et al ²¹	111	57 (17–83)	13	36%	Median 5.6 months	Most frequent chromosomes lost were 7 and 17
Manola et al ²²	140	13 (25–21)	12.1	NR	51.9% at 4 years	MK in children
Lu et al ²³	1,251	44 (15–89)	14.7	29.8%	Median 9 months	
Lazarevic et al ²⁴	1,893	71 (18–80)	18	59% in <60 years 41% in >60 years	NR	

Table I Main characteristics of AML patients with MK

Note: *AML patients with t (15;17), t (8;21), inv (16), and normal karyotype were excluded.

Abbreviations: AML, acute myeloid leukemia; FISH, fluorescence in situ hybridization; MK, monosomal karyotype; NR, not reported; OS, overall survival.

Overall survival %

Time (years)

Objectif thérapeutique

Stratégie ttt	Objectif	Enjeux
Curatif	Guérison	Toxicité / Futilisté
Palliatif actif	Durée de vie	Qualité de vie
Palliatif terminal	Symptômes	Qualité de la fin de vie

Définition Loyale et Réaliste Avec le patient et ses proches Entre Hématologue et Réanimateur

Weeks et al. JAMA 1998 Weeks et al. NEJM 2012 Vaz-luis et al. Cancer 2017 Fried et al. NEJM 2002 Special Article

UNDERSTANDING THE TREATMENT PREFERENCES OF SERIOUSLY ILL PATIENTS

TERRI R. FRIED, M.D., ELIZABETH H. BRADLEY, PH.D., VIRGINIA R. TOWLE, M.PHIL., AND HEATHER ALLORE, PH.D.

Stressful conditions for cancer patients in the intensive care unit

Judith E. Nelson et al., Critical CareMedicine 2001

Eligibilité pour une chimiothérapie intensive

Scores	Description					
General status assessments						
Karnofsky performance status	Numbered scale $(0 - 100)$ to classify patients according to functional impairment.					
ECOG performance status	Numbered scale (0 – 5) to define functioning of clinical trial population.					
Comprehensive geriatric assessment ¹	A comprehensive evaluation of cognitive and physical functions that may be used to improve risk stratificati					
Comorbidity indexes						
Charlson (CCI) ²	Method of classifying comorbidity to estimate risk of death from comorbid disease.					
Sorror (HCT-CI) ³	Simple, validated, reliable index of pre-SCT comorbidities that predicts non-relapse mortality and survival.					
SIE/SIES/GITMO consensus ⁴	A uniform and feasible characterisation of unfitness for intensive and non-intensive chemotherapy in AML.					
Composite prognostic scores						
MRC-NCRI score ⁵	A risk index based on regression coefficients of cytogenetics, age, WBC, PS and type of AML.					
SWOG/MDACC 6	Does not include the cytogenetic/molecular risk. "Age is primarily a surrogate for other covariates".					
German SAL score 7	A web-based application for prediction of older AML outcomes.					
Sorror AML model ⁸	HCT-CI augmented by hypoalbuminemia, thrombocytopenia and LDH level + age + cytogenetic/molecular risk.					
NCCN guidelines ⁹	Treatment decision-making algorithm, which predicts the probability of achieving CR and the risk for an early death					
	 Klepin HD, et al. <i>Blood</i>. 2013;121:4287-4294. Charlson ME, et al. <i>J Chronic Dis</i>. 1987;40:373-383. Sorror ML, et al. <i>Blood</i>. 2005;106:2912-2919. Ferrara F, et al. <i>Leukemia</i>. 2013;27:997-999. Wheatley K, et al. <i>Br J Haematol</i>. 2009;145:598-609. Walter RB, et al. <i>J Clin Oncol</i>. 2011;29:4417-4423. Krug U, et al. <i>Lancet</i>. 2010;376:2000-2008 					

8. Sorror ML, et al. JAMA. 2017; [Epub ahead of print] 9. NCCN. Acute Myeloid Leukemia (Version 3.2017).

Evolution des stratégie

ETUDE VIALE-A: AZA+VEN vs AZA

The NEW ENGLAND JOURNAL of MEDICINE

Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia

Eligibility Endpoints Treatment Primary Inclusion Patients with newly diagnosed Overall survival Venetoclax + Azacitidine confirmed AML (N=286) Venetoclax 400 mg PO, daily, days 1-28 + Secondary Ineligible for induction therapy defined Randomization 2:1 CR+CRi rate Azacitidine 75 mg/m² SC /IV days 1–7 as either N=433* CR+CRh rate ♦ ≥75 years of age 18 to 74 years of age with at least CR+CRi and CR+CRh rates by initiation of cycle 2 one of the co-morbidities: Placebo + Azacitidine CR rate CHF requiring treatment or Transfusion independence Ejection Fraction ≤50% Placebo daily, days 1-28 - Chronic stable angina CR+CRi rates and OS in molecular + Azacitidine 75 mg/m² SC /IV days 1-7 subgroups DLCO ≤ 65% or FEV1 ≤ 65% Event-free survival ECOG 2 or 3 Exclusion Prior receipt of any HMA, venetoclax, or Randomization Stratification Factors Age (<75 vs. ≥75 years); Cytogenetic Risk (intermediate, Poor); Region chemotherapy for myelodysplastic syndrome Cycle 1 ramp-up Day 1: 100 mg, Day 2: 200 mg, Day 3 - 28: 400 mg Venetoclax dosing ramp-up Favorable risk cytogenetics per NCCN Cycle 2 -> Day 1-28: 400 mg Active CNS involvement

* 2 patients were not stratified by cytogenetic risk. They were excluded from efficacy analysis but included in the safety analysis, 6 patients who did not receive treatment were excluded from the safety analysis set.

AML: Acute myeloid leukemia; CHP: Congestive heart failure; CNS: Central nervous system; CR: Complete remission; CR: CR+ incomplete marrow remission; CR: CR+ incomplete hematologic recovery; DCLO: diffusion lung capacity for carbon monoxide; ECOG: Eastern Cooperative Oncology Group; FEV1 : Forced expiratory volume; HMA: Hypomethylating agent; NCCN: National Comprehensive Cancer Network

Traitements +/- continus , traitements per os ...

Survie Globale

- HSCT
- HSCT deferred
 - Not HSCT candidate,
- survived at least least 60 days from diagnosis

HCT vs HCT deferred P = .002

HCT deferred vs not HCT candidate survived 60 d P = .035

Survie après la réanimation

hematocrit.

Tavares et al, *Leuk Lymph*, 2017 Pohlen et al, *PLoS One*, 2016

Les résultats de la réanimation dépendent de la quantité de défaillance

Intensive care in patients with newly diagnosed malignancies and a need for cancer chemotherapy*

Michael Darmon, MD; Guillaume Thiery, MD; Magali Ciroldi, MD; Sandra de Miranda, MD; Lionel Galicier, MD; Emmanuel Raffoux, MD; Jean-Roger Le Gall, MD; Benoît Schlemmer, MD; Élie Azoulay, MD, PhD

Crit Care Med 2005 Vol. 33, No. 11

100 90 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 n=7 n=29 n=44 n=9 n=6 n=5 Figure 1. Thirty-day mortality rates (%, y-axis) according to the number of organ failures (columns).

Outcome of Critically Ill Allogeneic Hematopoietic Stem-Cell Transplantation Recipients: A Reappraisal of Indications for Organ Failure Supports

Frédéric Pène, Cécile Aubron, Elie Azoulay, François Blot, Guillaume Thiéry, Bruno Raynard, Benoît Schlemmer, Gérard Nitenberg, Agnès Buzyn, Philippe Arnaud, Gérard Socié, and Jean-Paul Mira

Fig 1. In-intensive care unit (ICU; black bars) and in-hospital (gray bars) survival rates according to the Logistic Organ Dysfunction (LOD) score at admission in the ICU.

Outcomes of Critically Ill Patients With Hematologic Malignancies: Prospective Multicenter Data From France and Belgium—A Groupe de Recherche Respiratoire en Réanimation Onco-Hématologique Study

Elie Azoulay, Djamel Mokart, Frédéric Pène, Jérôme Lambert, Achille Kouatchet, Julien Mayaux, François Vincent, Martine Nyunga, Fabrice Bruneel, Louise-Marie Laisne, Antoine Rabbat, Christine Lebert, Pierre Perez, Marine Chaize, Anne Renault, Anne-Pascale Meert, Dominique Benoit, Rebecca Hamidfar, Mercé Jourdain, Michael Darmon, Benoit Schlemmer, Sylvie Chevret, and Virginie Lemiale

	Overall Cohort (N =1,011)		Patients Age < 60 Years (n =483)		Good Performance Status (n =816)*		Partial or Complete Remission (n =234)†		No Allogeneic BMT (n =866)		Dysfunction of Zero or One Organ (n =575)‡	
Life-Supporting Intervention	No.	%	No.	%	No.	%	No.	%	No.	%	No.	%
Total patients who died	397	39.3	169	34.9	284	34.8	78	33.3	319	36.8	115	20.0
Chemotherapy in the ICU	244		133		208		NA		244		141	
Patients who died	93	38.1	40	30.1	73	35.1			93	38.1	27	19.1
Noninvasive mechanical ventilation	318		148		244		71		260		142	
Patients who died	147	46.2	62	41.0	104	42.6	27	38.0	116	44.6	38	26.8
Invasive mechanical ventilation	484		228		378		106		415		73	
Patients who died§	293	60.5	126	55.0	214	56.6	57	53.8	244	58.8	23	31.5
Vasoactive drugs	518		233		394		126		438		101	
Patients who died§	298	57.5	122	52.4	213	54.1	57	45.2	247	45.9	22	21.8
Renal replacement therapy	262		126		206		20		231		64	
Patients who died§	155	59.2	73	58.0	111	53.9	11	55.0	131	56.7	12	18.8

Table 2. Hospital Mortality Associated With the Use of Life-Supporting Intervention Therapies in Five Predefined Subgroups

Abbreviations: BMT, bone marrow transplantation; ICU, intensive care unit.

*Good performance status was defined as neither bedridden nor completely disabled.

†BMT patients were all considered in partial or complete remission.

‡Requiring invasive mechanical ventilation, vasoactive drugs, or renal replacement therapy.

\$These patients received only one of the three following life-supporting interventions: invasive mechanical ventilation, vasoactive drugs, and renal replacement therapy.

Leukemia & Lymphoma, July 2012; 53(7): 1352–1359 © 2012 Informa UK, Ltd. ISSN: 1042-8194 print / 1029-2403 online DOI: 10.3109/10428194.2011.649752

ORIGINAL ARTICLE: CLINICAL

Intensive care unit management of patients with newly diagnosed acute myeloid leukemia with no organ failure

Etienne Lengliné, Emmanuel Raffoux, Virginie Lemiale, Michael Darmon, Emmanuel Canet, Nicolas Boissel, Benoît Schlemmer, Hervé Dombret & Elie Azoulay

Medical ICU and Hematology Departments, Hôpital Saint-Louis, AP-HP and UFR de Médecine, University Paris-7 Paris-Diderot, Paris, France

- Etude cas-contrôle rétrospective N =84
- Admission en réanimation avant la survenue de défaillance
- Appariement sur Age FAB Leucocytose avec patients admis en salle

Time (days) since AML diagnosis

Admission avant défaillance

Mottal et al. J Hematol 2020

Prognostic factors for intensive care unit admission, intensive care outcome, and post-intensive care survival in patients with *de novo* acute myeloid leukemia: a single center experience Haematologica 2011;96(2):231-237.

Peter Schellongowski,¹ Thomas Staudinger,¹ Michael Kundi,² Klaus Laczika,¹ Gottfried J. Locker,¹ Andja Bojic,¹ Oliver Robak,¹ Valentin Fuhrmann,³ Ulrich Jäger,⁴ Peter Valent,⁴⁵ and Wolfgang R. Sperr^{1,4}

Survie / guérison post réanimation

406 new diagnosed AML patients ICU required in 15% Landmark analysis (Day 30 / Complete remission)

Survie après chimiothérapie

Figure 1. Overall survival of patients admitted to the ICU at any stage during induction or consolidation chemotherapy, compared to patients not admitted to the ICU at any phase of treatment (p < 0.0001).

Figure 2. Landmark analysis showing overall survival of patients who survived all chemotherapy cycles administered, according to requirement for ICU admission (p = 0.83).

Devenir post rémission après traitements de suppléances vitales

Conclusion(s)

- 1. Les LAM sont (quasi) incurables pour la majorité des patients
- 2. Le pronostic à long terme est difficile à évaluer au plan individuel et surtout a la phase initiale
- 3. Eligibilité à recevoir une chimio intensive au sommet de l'algorithme décisionnel
- 4. Admission large & précoce en cas de projet curatif sans impact défavorable pour les survivants